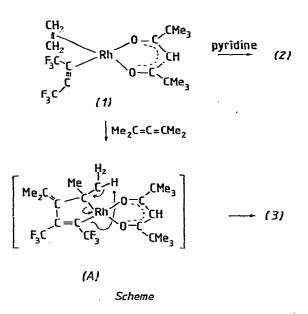
Journal of Organometallic Chemistry, 187 (1980) C1–C6 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

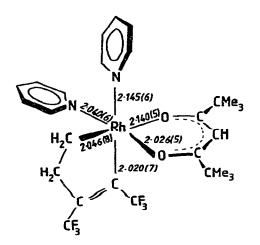
Preliminary communication

Formation of Metallacyclopent-2-enes from Alkene-Alkyne Rhodium Complexes. The reactions of pyridine and tetramethylallene with $[Rh(Me_3CCOCHCOCMe_3)^ (C_2H_4)(CF_3CECCF_3)]$ and the X-Ray Crystal Structures of (PivaloyImethanato)-bis(pyridine)rhoda-2.3-bis(trifluoromethyl)cyclopent-2-ene and (PivaloyI-methanato)n-1,2,4,5{1,2-bis(trifluorimethyl)-4-methyl-3(prop-2'-ylidene)-penta-1,4-diene}rhodium(I).

By Christopher E. Dean, Raymond D. W. Kemmitt,* David R. Russell^{**} and Michael D. Schilling.


Department of Chemistry, The University, Leicester LE1 7RH, (Great Britain) (Received January 2nd, 1930)

<u>Summary</u>. Pyridine and tetramethylallene react with [Rh(Me₃CCOCHCOCMe₃) (c_2H_4)(CF₃C=CCF₃)] (1) to give [Rh[CH₂CH₂C(CF₃)=C(CF₃)}(Me₃CCOCHCOCMe₃) py₂] (2) and [Rh(Me₃CCOCHCOCMe₃){CH₂=C(Me)C(=CMe₂)C(CF₃)=CHCF₃}] (3) respectively which have been characterised by single crystal X-ray studies; the formation of (2) provides evidence for the intermediacy of rhodacyclopent-2-enes in the rhodium assisted cyclotrimerisation of two alkynes and one alkene.


ALKYNES have been shown to react with bis(alkene) complexes of rhodium(I) to give cyclohexa-1,3-diene derivatives co-ordinated to rhodium(I).^{1,2,3} We have shown⁴ that an initial step in this cyclotrimerisation of two alkynes and one alkene is the formation of alkene-alkyne complexes⁴ and

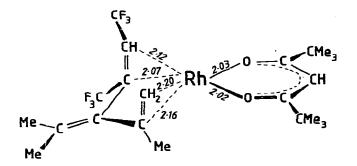
it has been suggested³ that a subsequent step involves metallacyclopent-2-ene intermediates. Recently some cobaltacvclopent-2-ene complexes have been shown to be of importance in the mechanism for cobalt assisted alkynealkene co-oligomerisation and kinetic studies have provided evidence for an intermediate in which alkene and alkyne are simultaneously co-ordinated to cobalt.⁵ We now provide evidence for the collapse of an alkene-alkyne complex to metallacyclopent-2-ene complexes.

Pyridine reacts at room temperature with $(1)^4$ in diethyl ether to afford (40%) a pale green crystalline compound (2) [m.p. 48-49°C]. The ¹⁹F n.m.r. spectrum (CDC1₃) of (2) between 20°C to 60°C showed signals at 52.8q, 54.7q [3F, J(FF) 14 Hz] and 57.9 p.p.m. [q, 3F, J(FF) 14 Hz] (rel. CC1₃F at 0.0 p.p.m.). In order to establish the molecular structure of (2) a single crystal X-ray diffraction study was carried OUT.

<u>Crystal data</u>. $C_{27}H_{33}F_{6}N_{2}O_{2}Rh$, <u>M</u> = 634.5, monoclinic, <u>a</u> = 11.561(7), <u>b</u> = 16.686(10), <u>c</u> = 14.85(1)Å, <u>B</u> = 90.2(1)^O, <u>U</u> = 2865.4Å³, <u>Z</u> = 4. <u>F</u>(000) = 1296, <u>D</u> = 1.45, <u>D</u> = 1.47, Mo-K_a λ = 0.7107Å μ (Mo-K_a) = 5.81 cm⁻¹, space group $\underline{P2}_1/\underline{n}$. 3557 reflections with $\underline{I} \ge 3\sigma(\underline{I})$ measured by Stoe Weissenberg diffractometer gave $\underline{R} = 0.077$ with anisotropic thermal parameters for Rh, F and methyl carbon atoms only. The molecular structure found for (2) is consistent with the formula shown on Figure 1. Bond lengths of coordinated atoms to rhodium show the large <u>trans</u> influence of σ -bonded carbon atoms.

(2)

FIGURE 1 The molecular structure of Rh(py)₂(dpm)(C₆H₄F₆).


The principal feature of interest in the structure of (2) is the presence of a rhodacyclopent-2-ene ring which provides further evidence for the intermediacy of metallacyclopent-2-enes^{3,5} in the formation of cyclohexa-1,3-diene derivatives from two alkynes and one alkene. An alternative mechanism involving intermediate metallacyclopentadienes has also been reported.^{6,7} The formation of (2) from an alkene-alkyne complex is relevant to recent studies on the equilibrium between metallacyclopentanes and bis(alkene)-metal complexes.⁸ The complex (2) is also related to the rhodacyclopentane complex cis-[Rh{CH₂-C(=CH₂)-C(=CH₂)-CH₂}(acac)py₂] derived from the reaction of allene with [Rh(acac)(C₂H₄)₂].⁹ Although crystals of (2) contain 2 cis pyridine ligands, the two ¹⁹F n.m.r. resonances at 52.8 and 54.7 p.p.m. (total relative intensity three) are probably due to the presence

of both <u>cis</u>- and <u>trans</u>- isomers of (2) in solution. Complexes analogous to (2) can also be obtained by the addition of 3-methylpyridine and 3,5-dimethylpyridine to (1). These reactions of (1) with nitrogen donor ligands contrast with the reactions of (1) with tertiary-phosphines, arsines, and stibines which result in displacement of ethylene to give the complexes [Rh(Me₃CCOCHCOCMe₃) ($C_{4}F_{6}$) (MPh₃)₂] (M = P, As, and Sb).⁴

The reaction of tetramethylallene with (1) also results in displacement of ethylene to afford (70%) orange crystals of (3) [m.p. 113-114⁰C], characterised by a single crystal X-ray study.

<u>Crystal Data</u>. $C_{22}H_{31}F_{6}O_{2}Rh$, $\underline{M} = 544.4$, monoclinic $\underline{a} = 11.50(1)$ $\underline{b} = 19.00(1)$ $\underline{c} = 23.32R$ $\beta = 99.7(1)^{O}$, $U = 5022R^{3}$, $\underline{Z} = 8$, $\underline{D}_{\underline{m}} = 1.43$ $\underline{D}_{\underline{c}} = 1.440$, Mo-K $\lambda = 0.7107R$ $\mu(Mo-\underline{K}_{\alpha}) = 6.53cm^{-1}$, space group $\underline{P2}_{1}/\underline{c}$. 3316 reflections with $\underline{i} \ge 3\sigma(\underline{I})$ gave $\underline{R} = 0.051$ at the current stage of refinement.

The structure found for (3) is depicted in Figure 2, which shows that allene has reacted with the co-ordinated C_4F_6 to give a 1,4 diene ligand.

(3)

FIGURE 2

The molecular structure of $Rh(dpm)(C_{11}H_{12}F_6)$. Distances shown are the average of two independent molecules, and have e.s.d.'s of 0.01-0.015Å. β -hydride elimination from a metallacyclopent-2~ene intermediate (A) provides an attractive route to (3), (Scheme) a reaction analogous to the formation of butenes from metallacyclopentanes.¹⁰

ACKNOWLEDGEMENTS

We thank Johnson and Matthey for loan of hydrated rhodium(III) chloride and the S.R.C. for support (to M.D.S.).

REFERENCES

~~_

- D. M. Barlex, A. C. Jarvis, R.D.W. Kemmitt, and B. Y. Kimura, J.C.S. Dalton, (1972) 2549.
- A. C. Jarvis and R. D. W. Kemmitt, <u>J. Organometallic Chem</u>., 136 (1977) 121.
- P. Caddy, M. Green, E. O'Brien, L. E. Smart and P. Woodward, <u>Angew</u>. Chem. Int. Edn., 16 (1977) 648.
- 4. J. H. Barlow, G. R. Clark, M. G. Curl, M. E. Howden, R. D. W. Kemmitt, and D. R. Russell, <u>J. Organometallic Chem.</u>, 144 (1978) C47.
- Y. Wakátsutki, K. Aoki and H. Yamazaki, <u>J. Amer. Chem. Soc</u>., 101 (1979) 1123.
- H. Suzuki, K. Itoh, Y, Ishii, K. Simon and J. A. Ibers, <u>J. Amer. Chem</u>. <u>Soc</u>., 98 (1976) 9494.
- 7. Y. Wakatsuki and H. Yamazaki, J. Organometallic Chem., 139 (1977) 169.

8. R. H. Grubbs and A. Miyashita, J. Amer. Chem. Soc., 100 (1978) 1300.

C6

- 9. G. Ingrosso, L. Porri, G. Pantini and P. Racanelli, <u>J. Organometallic</u> Chem., 84 (1975) 75.
- 10. R. H. Grubbs and A. Miyashita, <u>J. Amer. C.em. Soc</u>., 100 (1978) 7416.